理解和控制金属3D打印过程中熔池的行为一直是个难题,能不能像二维打印那样,在打印之前来个“打印预览”,将可能发生的一些错误避免掉?
增材制造仿真的专业公司3DSIM已经与Sigma Labs合作开发了一个名为FLEX?软件,该软件模拟热传感器对金属增材制造工艺的响应,提前避免可能发生的错误,FLEX?全部商业版本计划于2018年初发布。
FLEX?是增材制造数字线程中的关键部分,FLEX?用户可以运行一个模拟软件,预测他们3D打印设备中的高速非接触式高温计将“看到”什么,就像二维打印文字处理软件的“打印预览”功能一样。
小编认为仿真软件3DSIM的软件设计基础是通过对超过1000种不同的材料组合性能特点的了解,了解材料的组合对零件哪些方面有较大的影响,从而得到一些有趣的结果,来帮助确定材料特性和熔池宽度以及深度之间的关系,通过精确地模拟熔池宽度和深度,可以直接预测零件的表面粗糙度、精度和孔隙率。
一旦零件的几何形状被建模,仿真软件可以用来预测有代表性的激光扫描路径。模拟得到激光及其与材料的相互作用模型。该模型提供了材料在激光作用下从粉末变成液态再到凝固的科学描绘,模型模拟了粉末在粉末床上被加热、能量的爆破、熔化和快速冷却凝固过程,每一层的构建由此类推。
一旦建立层的扫描策略,模拟仿真可以提供该层准确的温度历史,这种历史可以用来预测材料的晶体结构、孔隙度、变形和残余应力。仿真数据基于设备和材料的物理因素,包括粉末材料的堆积密度,激光能量吸收特性和热传导率。
通过仿真可以调整工艺参数,以及更换新的粉末,通过软件确定扫描策略以及选择粉末。模拟软件将预测这些改变对零件性能的影响。
而Sigma Labs的核心实力在于感应器硬件与数据和软件的融合。
硬件方面,Sigma Labs传感技术-Sensorpak,是一个由声、光、热传感器、收集过程数据的全套系统。传感器记录的数据将建立过程文件,其中西格玛实验室工程师通过在洛斯阿拉莫斯国家实验室多年来在冶金和焊接的研究经验,能够从大数据中提取关键的质量记录,并通过结果特征还原关键过程的物理特征。
由于硬件记录和积累了大量的数据,从而Sigma Labs由过程测量发展到过程控制,工艺参数存储会作为微观层面的设置跟结果做匹配。从工艺参数创建与质量的相关性。如果预定的规则都不符合,打印过程中断和信号激活的过程中,参数检测以及纠正执行偏差。在这种方式下,就需要防止出现有缺陷的熔池。这种过程控制被称为过程质量保证,是西格玛实验室独特的(iPQA?)技术。此外,过程质量度量(iPQM?)包括质量保证,这样可以提高生产效率,并实现制造业务精益战略。
【责任编辑:徐双俊】
关键词:塑料模具,其他模具,3D打印模具